
DJANGO GIRLS
WEBSOCKET WORKSHOP



2

Introduction

Ever sent a message on WhatsApp or Telegram and wondered how it works behind the scenes?
Get ready to unlock that mystery! In this hands-on workshop, we'll build an exciting real-time
chat application using Django that lets people connect and chat instantly in different rooms.

What You'll Create💬

A fully functional chat application where users can:

● Join different chat rooms
● Send and receive messages instantly
● See message history
● Experience real-time updates

What You'll Learn📚

1. Websockets Explained Simply
○ What they are and why they're perfect for chat apps
○ How they're different from regular web connections

2. Hands-On Development
○ Create your own WebSocket consumer
○ Set up proper routing
○ Build an interactive client interface

3. Power Features
○ Integrate Redis for enhanced performance
○ Make your app lightning-fast with asynchronous programming
○ Store chat history in a database

Prerequisites

Before you start make sure you have the following installed:

● Python 3.10 and above
● Django 5



3

WEBSOCKETS

Websockets sound fancy, and anyone who has never used them will probably think of them as
black magic. But, conceptually, they are quite simple!

Let's first talk about how a traditional HTTP request works. In this world you have a client
(usually the browser), and a server (usually the...well, server). The client starts off by sending a
request to the server (e.g. "please load this webpage"). The server then processes the request and
sends a response to the client (e.g. "here it is!"). Once the content has been delivered to the
client, the connection is closed and the request is completed.

https://en.wikipedia.org/wiki/WebSocket


4

You can think of this HTTP interaction like writing a letter to a pen pal. You send the letter, it
gets delivered, your pen pal reads it, and then they send you a response. Each letter gets one
and only one response, and everything happens serially.

If HTTP is like letter-writing, then websockets is like making a phone call. Instead of sending
requests and getting responses, the client first opens a connection to the server (i.e. calls
someone). Once the connection is established (call is answered), both the client and server can
send messages over the channel as much as they want (the conversation). Then, at some point
the channel is closed (hanging up) and the conversation is over.



5

The main difference between normal HTTP requests and web sockets is the "open channel"
where both client and server can send and receive messages at any time. This makes websockets
a good choice when you are expecting multiple messages from the server in a row—for example
in a chatting UI.

Enough talk. Let’s code.

Creating A Chat Application
Make sure you have Django installed in your virtual environment. If you have any difficulties,
reach out to a mentor.

Go to your project folder and start by creating a new project with django:

django-admin startproject config .

Then create an app called chat with:

django-admin startapp chat

Then edit the `settings.py` file in the `config` folder and activate the chat application in your
project by editing the `INSTALLED_APPS` setting as follows:



6

The chat application is now active in your project. You can confirm if everything is set by
running `python manage.py runserver`. You should see something like this:

Creating Our Index View:

Let’s create our first view in the chat app, go to the view.py folder and add the following:

We have defined a simple function called index and its task is to render (display) the index.html
file. We haven’t created a html file though so let’s do that.

Actually, django being django, to display the page we will have to do the following:

- Create a view (which we just did)



7

- Add our view to urls.py
- Add our app to the main urls.py which is under the config folder (confusing I know)
- Create a static folder. This is where we will store our css files
- Create a template folder. This is where we will put our html files.

That’s quite a lot of configuration to display one page.

Adding Views To URL Patterns:
Create a file called `urls.py` under the `chat` folder. Then add the following lines of code:

What we are basically doing is telling django that whenever someone visits the root url, then
display the index page. The root url is the main url without a slug (eg: 127.0.0.1:8000,
www.google.com etc). URLS like 127.0.0.1:8000/chat and www.google.com/search are not root
URLs as they contain slugs.

Once we add the URL pattern on the app level, we have to include it in the project level. Go to
urls.py file under the config folder, and make the following changes:

http://www.google.com
http://www.google.com/search


8

What we are doing is telling django that, ‘Listen up django, we have this app called ‘chat’ and it
has its own URL patterns that you must include in the project.’ After adding these lines, django
has no option but to oblige.

Adding The Static Folder

The static folder is where all static files like css, javascript, images, icons etc are located. These
are files that do not change, or at least do not change often.

For our project, we will only have one static file called `styles.css`. You can download it from
here.

Once you’ve downloaded the css file, create a folder called static in the root of your project, then
place the css file inside it.

Then update the settings.py file under the config folder as follows:

https://raw.githubusercontent.com/pythontanzania/DjangoGirlsWorkShopNov24/refs/heads/main/static/css/base.css


9

We are telling django that the static folder of this project is in the root directory.

Adding The Templates Folder

The templates folder is where we place our html files. They are called templates because they
contain placeholders and template tags that Django can dynamically fill with data from our
views and models.

Templates allow us to create reusable HTML layouts and inject dynamic content while keeping
our presentation logic separate from our business logic. By default, Django looks for templates
in a 'templates' directory within each installed app.

But since this is a relatively small project, we will create our template in the root directory.
Then we will make the following changes on settings.py:



10

And similar to the static folder, we are telling django that templates folder is in the root
directory.

So, by now you should have a structure similar to this in your project:

We are almost done. What’s left is creating the html pages.

Adding HTML Files To Templates
We will add two html files:

1. The base.html file, which will be the base template for pages in this project.
2. The index.html file, this will extend the base template and will be the home page of our

app.



11

The Base Template

Create a base.html file and add the following lines of code:

What this basically does is:

● Create the head tags
● Import CSS stylings
● Create a block for content
● Create a block for Javascript

The Index Template

Now create the index.html file and add the following lines of code:



12

What this does is:

● Create a Join chat room card
● Creates form fields
● The form fields are:

○ `username`: Which is the user’s name
○ `room_name`: Which is the room the user wants to join to chat



13

● There is also a CSRF tag, this is for preventing a hacking method called Cross-Site
Scripting Attack. The tag is present by default in Django and must be used when
submitting forms.

Now when you run your django app you will see a beautiful page like this:

Accepting Form Input

Now let’s update our index view to accept form input:



14

Whenever a form is submitted it sends a POST request. A POST request is a http method to send
data to a server. Other http methods include:

- GET: Which fetches data
- DELETE: Which sends a delete request
- UPDATE: Which sends an update request

On the view, we will check if the request method is POST, and if yes we will extract the values.
For now we will simply extract these values.

So if you fill in values on the index page and click Join Room, you will see the username and
room name logged on the terminal:



15

Now let's create the chat view!

The Chat View
The chat view will be simple. We basically want the user’s username and the room they want to
join.

Go to your views.py and add the following:



16

This view accepts parameters room_name and username. Then it will render the room.html
template and provide the room_name and username values.

We don’t have a room.html template yet, so let’s create that:

This is what the room.html does:



17

- Extends the base.html template we already made
- Renders the title of our chat room and greets the user
- Creates a nice container for viewing messages
- Creates an input box for us to type our messages
- Notice we also render the room_name and username values with:

```

{% block include_js %}

{{ room_name|json_script:"room_name" }}

{{ username|json_script:"username" }}

{% endblock %}

```

What this does is creates a script tag for both room_name and username. This is so we
can access it later.

Now that we have our room.html, let's update the urls.py to include the chatroom view.

Update urls.py:
Go to your urls.py inside the chat folder and update the urlpatterns as follows:

We now added a room slug which will call the chatroom view we just created. Notice that the
path has two variables, the `room_name` and the `username`.



18

Now if you go to the url `/room/my-room/my-username`, you should see something like this:

Awesome right? You did great. Take a five minute break to congratulate yourself. Next we will
implement the chat feature, but first - a little theory.

Real-time Django with Channels
You are building a chat server to communicate in a room and exchange messages. This
functionality requires real-time communication between the server and the client.

Think of it like this:

- Regular websites work like sending letters through mail you have to keep checking your
mailbox to see if you got new mail

- But a chat room needs to work more like a phone call - you hear the other person right away
when they speak



19

The old way of making websites (where you have to keep checking for updates) isn't good
enough for a chat room. It would be like refreshing your page every few seconds to see new
messages - that's slow and wastes resources!

Instead, we need a special way where:

- When someone sends a message, it appears on everyone's screen right away

- You don't need to keep checking or refreshing the page

- The server can instantly "push" new messages to everyone in the chat

This is called "asynchronous communication" - it's like having an open phone line where
messages can flow freely both ways.

This makes the chat:

- Faster

- More efficient

- More like a real conversation

We're going to build this chat room using something called ASGI, which helps us create this
instant, two-way communication.

Making Your Chat Room Work Better ASGI
Normally, Django works in a simple back-and-forth way:

- Your browser asks for something

- The website responds

- And that's it until you ask for something else

This way of deploying Django is called Web Server Gateway Interface (WSGI).

But for a chat room, we need something better. We need a system that can:

- Keep connections open



20

- Send messages instantly

- Handle many people chatting at once

This is where two important tools come in:

1. ASGI (think of it as an "upgraded version" of how Django usually works):

- Asynchronous Server Gateway interface allows for asynchronous communication. It's newer
and faster

- It can handle real-time stuff

- Perfect for chat rooms!

2. Channels (an extra tool that makes ASGI even better):

- Helps manage ongoing connections

- Great for chat rooms and similar apps

- Makes everything run smoothly

So now we will upgrade our app from just using http, to giving it the ability to use both http and
websockets.

Installing Channel In Django
Since we are now changing our django app from using WSGI to ASGI, we will have to install a
channels package. Install it with:

Then update the INSTALLED_APPS inside the settings.py to include ‘daphne’ as follows:



21

Notice that `daphne` has to be the first item in INSTALLED_APPS, otherwise it will not work.

Then you will have to enable asgi support in django. Go to the `asgi.py` file inside config, and
write the following:

We define the main ASGI application that will be executed when serving the Django project
through ASGI. You use the ProtocolTypeRouter class provided by Channels as the main entry
point of your routing system. ProtocolTypeRouter takes a dictionary that maps communication
types like http or websocket to ASGI applications. We instantiate this class with the default
application for the HTTP protocol. Later, we will add a protocol for the WebSocket.



22

Finally we will update the settings.py as follows:

Now if we run our application with:

We should see something like this:

Notice the `Starting ASGI/Daphne`, this tells us that our django is now running via ASGI.

Now that our django app is upgraded, let's give it the ability to accept websocket protocols. For
HTTP requests, what we usually do is:

- Define the view
- Add it to the app urls
- Add the app urls to the project urls

We are going to do the same thing for websockets:

- Define a consumer



23

- Configure websocket urls (called routes)
- Add the app routes to the project urls

Setting Up A Consumer

Consumers are the equivalent of Django views for asynchronous applications. As mentioned,
they handle WebSockets in a very similar way to how traditional views handle HTTP requests.

Consumers are ASGI applications that can handle messages, notifications, and other things.
Unlike Django views, consumers are built for long-running communication. URLs are mapped to
consumers through routing classes that allow you to combine and stack consumers.

Let’s implement a basic consumer that can accept WebSocket connections and echoes every
message it receives from the WebSocket back to it. This initial functionality will allow the
student to send messages to the consumer and receive back the messages it sends.

Create a new file inside the chat application directory and name it consumers.py. Add the
following code to it:



24

This is the ChatConsumer consumer. This class inherits from the Channels
AsyncWebsocketConsumer class to implement a basic WebSocket consumer. In this consumer,
you implement the following methods:

• connnect(): Called when a new connection is received. You accept any connection with
self.accept(). You can also reject a connection by calling self.close().

• disconnect(): Called when the socket closes. You use pass because you don’t need to
implement any action when a client closes the connection.

• receive(): Called whenever data is received from the WebSocket. You expect text to be received
as text_data (this could also be binary_data for binary data). You treat the text data received as
JSON. Therefore, you use json.loads() to load the received JSON data into a Python dictionary.
You access the message key, which you expect to be present in the JSON structure received. To
echo the message, you send the message back to the WebSocket with self.send(), transforming it
into JSON format again through json.dumps().

The initial version of your ChatConsumer consumer accepts any WebSocket connection and
echoes to the WebSocket client every message it receives. Note that the consumer does not
broadcast messages to other clients yet. You will build this functionality by implementing a
channel layer later.

First, let’s expose our consumer by adding it to the URLs of the project.

Routing

You need to define a URL to route connections to the ChatConsumer consumer you have
implemented.

Channels provides routing classes that allow you to combine and stack consumers to dispatch
based on what the connection is. You can think of them as the URL routing system of Django for
asynchronous applications.

Create a new file inside the chat application directory and name it routing.py. Add the following
code to it:



25

In this code, you map a URL pattern with the ChatConsumer class that you defined in the
chat/consumers.py file. There are some details that are worth reviewing:

- You use Django’s path() to define the path just as how you do it on urls.py
- The URL includes two parameters: room_name and username. These parameters will be

available in the scope of the consumer and will allow you to identify the chat room the
user is connecting to.

- You call the as_asgi() method of the consumer class in order to get an ASGI application
that will instantiate an instance of the consumer for each user connection. This behavior
is similar to Django’s as_view() method for class-based views.

Now let's add these routes to the main route. Go to the asgi.py file and add the following:



26

Note that we have defined two protocols:

1. For http we tell it to use django’s default urls
2. For websocket we use the websocket_urlpatterns we defined in routing.py

Now let us give the browser the ability to connect to the websocket.

Implementing the WebSocket client
Now this is a django workshop, but unfortunately since we are dealing with the browser we are
forced to write some javascript. For now don’t worry too much about it, I have added comments
to explain what they do but if you do not understand it, don’t worry.

Go to your room.html file, and on the `domready` block add the following lines of code:



27



28

So for now if you got to `/room/test-room/rose` you will see something like this:



29

Enabling A Channel Layer
Currently with our application, if two people join the same room, they will not be able to
communicate with each other. This is because they are in separate channels.

To overcome this, we will add a channel layer to enable people in the same room to be able to
talk to each other.

The channel layer has two parts to manage communication:

Channels: these are like personal mailboxes:

● Each mailbox (channel) has a unique address (name)
● Anyone who knows your address can send you letters (messages)
● Only you can check and read your mailbox (consume messages)

Groups: these are like mailing lists:

● A mailing list (group) has a name
● Multiple mailboxes (channels) can be part of the list
● When someone sends a message to the mailing list, everyone on the list gets a copy
● People (channels) can join or leave the list at any time

In our use case:

● A chat application might give each user their own channel for private messages
● All users in a chat room might be part of a group, so when someone sends a message to

the group, everyone in the chat room receives it

We will use Redis as our channel layer. So let’s set it up.



30

Setting Up A Channel Layer With Redis

Redis is like a super-fast digital notebook that stores information using labels (keys) and their
corresponding values.

Example:

● Like storing "username: john_doe" or "favorite_color: blue"

Using Redis has many advantages such as:

1. Lightning-fast access to data
2. Perfect for temporary data storage (like user sessions)
3. Great for counting things (like website visits)
4. Helps reduce database load
5. Useful for caching frequently accessed data

Think of it as a quick-access storage shelf where you can easily put and retrieve items using
labels, rather than searching through a large filing cabinet (traditional database).

Redis is usually used in:

● Storing login sessions
● Saving game scores
● Caching website content
● Managing real-time data

And many other places. We will use redis to store our chat rooms.

To use the redis layer as a channel install the package as follows:

Then edit the settings.py file as follows:



31

Here we define the configuration of the channel layer, we tell django that we will use Redis and
that Redis can be accessed via port 6379.

Note that there are many ways to install redis, you can refer to the official documentation here:
https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/

But the easiest way to have redis up and running is by using docker. If you have docker installed,
open a new terminal and start redis with:

You can check if you can connect to the redis channel by first running this command:

Then run these:

https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/


32

You should get the following output:

The channel layer is successfully communicating with Redis. Good job!

Updating The Consumer To Broadcast Messages

Now that we have the channel layer, lets update the consumer to use it. We want that whenever
we receive a message, we update everyone connected to the channel with that message.

Modify the connect method in consumer.py as follows:

The code above does the following:

- We retrieve the username and room_name from the url. Remember we defined the url as:

So it can get the username and the room name by extracting it from the url.



33

- Once we get the room_name and username, we just add them to a group.
- Then finally, we add a self.accept() to accept incoming websocket connections.

Let’s also update the disconnect method so that we can remove a user from the channel layer.
Add the following lines to disconnect method:

We remove them from the channel by using group_discard().

Lastly we will update the receive method so that we can broadcast the received message to the
group.

Let’s import the django’s time utility:

Then update the receive function:



34

- In the code above we get the data received which is json format, then we extract the
message content and assign it to a variable. We get the time it was sent and assign it to
the now variable.

- We then broadcast the message with group_send, we provide the room_name to
broadcast to. And we include the data we want to send which are:

- message: ie the message
- user: which is the username
- datetime: which is the time it was sent

- The type is a special field, and here we provide the function we want to use for
broadcasting the message. Let’s create that function:



35

This function simply sends the message.

The full consumer.py file should look like this:



36

And voila, that’s it. We now have a complete chat application in django. Give it a try by opening
two browsers, connect to the same room and send messages.


