DJANGO GIRLS

Building a Real-Time Video
Chat Application with
Django

Introduction

Ever jumped on a Zoom call or FaceTime and wondered about the magic happening behind the
scenes? Get ready to uncover those secrets! In this hands-on workshop, we'll build an exciting
real-time video chat application using Django that lets people connect face-to-face and
communicate instantly in virtual rooms.

What You'll Create (-

A fully functional video and chat application where users can:

e Join different public chatrooms
e Have one on one video calls

You can think of this workshop as having two parts, the first whereby you create a chat
application to understand websockets, and the second whereby you extend it by adding a video
call functionality.

What You'll Learn &=

1. Websockets Explained Simply
o What they are and why they're perfect for real time applications
o How they're different from regular web connections
2. WebRTC
o An overview of what they are
3. Hands-On Development
o Create your own WebSocket consumer
o Set up proper routing
o Create a WebRTC client
o Build an interactive client interface

Prerequisites

Before you start make sure you have the following installed:

e Python 3.10 and above
e Django 5

WEBSOCKETS

Websockets sound fancy, and anyone who has never used them will probably think of them as
black magic. But, conceptually, they are quite simple!

Let's first talk about how a traditional HTTP request works. In this world you have a client
(usually the browser), and a server (usually the...well, server). The client starts off by sending a
request to the server (e.g. "please load this webpage"). The server then processes the request and
sends a response to the client (e.g. "here it is!"). Once the content has been delivered to the
client, the connection is closed and the request is completed.

Stoandard HT TP
workflow —

5 — J [|

Client (browser) Server

request Mﬁll:\pt:&g{i = -E-CREE?—:_::-

-< Here yo go! response

Time pASSEs...

request Ancther one! —

N You got it/ response

https://en.wikipedia.org/wiki/WebSocket

You can think of this HTTP interaction like writing a letter to a pen pal. You send the letter, it

gets delivered, your pen pal reads it, and then they send you a response. Each letter gets one

and only one response, and everything happens serially.

If HTTP is like letter-writing, then websockets is like making a phone call. Instead of sending

requests and getting responses, the client first opens a connection to the server (i.e. calls

someone). Once the connection is established (call is answered), both the client and server can

send messages over the channel as much as they want (the conversation). Then, at some point

the channel is closed (hanging up) and the conversation is over.

Client (browser)

Websocket
workflow

estoblish Let's chat! e
connection ": Ok !
send/receive Yol } send/receive
mESSages ‘ How's ‘th'inﬁrs.? } messages
Al good.
< You?
Con't cnmplmtn... —

Time passes...

|
c luEE !

Gotta run —

connection '(

Blfe..

The main difference between normal HTTP requests and web sockets is the "open channel"

where both client and server can send and receive messages at any time. This makes websockets
a good choice when you are expecting multiple messages from the server in a row—for example
in a chatting UlI.

Now that we have an idea of what WebSockets are, let's discuss a little bit about WebRTC.

WebRTC

WebRTC enables direct peer-to-peer communication between browsers. Unlike WebSockets,
which require a server to relay messages between clients, WebRTC allows connected devices to
communicate directly with each other without an intermediary server.

It should be noted that even though WebRTC can allow devices to communicate directly, they
still need a signalling server that will securely connect the two devices.

Client (browser) Client (browser)

This is an overview of how WebRTC connection works:

- Lets say computer A wants to communicate with computer B via WebRTC

- Computer A will send an Offer asking for computer B to connect to them

- The offer generates a session description protocol (SDP) which will describe the peer to
peer connection (video codec, timing etc)

- The SDP will be saved on the server and the server will inform computer B about the

offer.
- Computer B will then accept Computer A’s offer by sending an SDP answer to the server.
- The two computers will then communicate with each other directly via a peer-to-peer
connection without going through the server.

So in short:

1. We will use HTTP requests for displaying regular html pages
2. We will use WebSockets for sending text messages
3. We will use WebRTC for video call

All good? Let’s get coding. Please make sure you already have Python and Django installed.

Creating A Chat Application

Make sure you have Django installed in your virtual environment. If you have any difficulties,
reach out to a mentor.

Go to your project folder and start by creating a new project with django:
django-admin startproject config .
Then create an app called chat with:

django-admin startapp chat

Then edit the “settings.py" file in the “config" folder and activate the chat application in your
project by editing the 'INSTALLED APPS" setting as follows:

The chat application is now active in your project. You can confirm if everything is set by
running ‘python manage.py runserver . You should see something like this:

The inatall worked successfully! Congratulations!

are gEaEng this page because DEBUS=True & in
POLT S80] woid aess it cenligured

Creating Our Index View:

Let’s create our first view in the chat app, go to the view.py folder and add the following:

django.shortcuts

) :
(request, 'index.html')

We have defined a simple function called index and its task is to render (display) the index.html
file. We haven’t created a html file though so let’s do that.

Actually, django being django, to display the page we will have to do the following:

- Create a view (which we just did)

- Add our view to urls.py

- Add our app to the main urls.py which is under the config folder (confusing I know)
- Create a static folder. This is where we will store our css files

- Create a template folder. This is where we will put our html files.

That’s quite a lot of configuration to display one page.

Adding Views To URL Patterns:

Create a file called "urls.py” under the ‘chat’ folder. Then add the following lines of code:

django.urls path
views

app_name = 'chat’

urlpatterns = [
('', views.index, ='index'),

What we are basically doing is telling django that whenever someone visits the root url, then
displays the index page. The root url is the main url without a slug (eg: 127.0.0.1:8000,
www.google.com etc). URLS like 127.0.0.1:8000/chat and www.google.com/search are not root
URLs as they contain slugs.

Once we add the URL pattern on the app level, we have to include it in the project level. Go to
urls.py file under the config folder, and make the following changes:

http://www.google.com
http://www.google.com/search

What we are doing is telling django that, ‘Listen up django, we have this app called ‘chat’ and it

has its own URL patterns that you must include in the project.” After adding these lines, django
has no option but to oblige.

Adding The Static Folder

The static folder is where all static files like css, javascript, images, icons etc are located. These
are files that do not change, or at least do not change often.

For our project, we will only have one static file called “styles.css’. You can download it from
here.

Once you’ve downloaded the css file, create a folder called static in the root of your project, then
place the css file inside it.

Then update the settings.py file under the config folder as follows:

https://raw.githubusercontent.com/pythontanzania/DjangoGirlsWorkShopNov24/refs/heads/main/static/css/base.css

We are telling django that the static folder of this project is in the root directory.

Adding The Templates Folder

The templates folder is where we place our html files. They are called templates because they
contain placeholders and template tags that Django can dynamically fill with data from our
views and models.

Templates allow us to create reusable HTML layouts and inject dynamic content while keeping
our presentation logic separate from our business logic. By default, Django looks for templates
in a 'templates' directory within each installed app.

But since this is a relatively small project, we will create our template in the root directory.
Then we will make the following changes on settings.py:

And similar to the static folder, we are telling django that templates folder is in the root
directory.

So, by now you should have a structure similar to this in your project:

db.sglite3

README .md
requirements. txt

We are almost done. What’s left is creating the html pages.

Adding HTML Files To Templates

We will add two html files:

1. The base.html file, which will be the base template for pages in this project.
2. The index.html file, this will extend the base template and will be the home page of our

app.

The Base Template

Create a base.html file and add the following lines of code:

What this basically does is:

e C(Create the head tags

e Import CSS stylings

e C(Create a block for content

e Create a block for Javascript

The Index Template

Now create the index.html file and add the following lines of code:

What this does is:

e C(Create aJoin chat room card
e C(Creates form fields
e The form fields are:
o ‘username’: Which is the user’s name

o ‘room_name: Which is the room the user wants to join to chat

e There is also a CSRF tag, this is for preventing a hacking method called Cross-Site
Scripting Attack. The tag is present by default in Django and must be used when

submitting forms.

Now when you run your django app you will see a beautiful page like this:

© O £ N =

Join a Chat Room

Room Name

{]

Your Name

Please enter your name.

Aceepting Form Input

Now let’s update our index view to accept form input:

Whenever a form is submitted it sends a POST request. A POST request is a http method to send
data to a server. Other http methods include:

- GET: Which fetches data

- DELETE: Which sends a delete request
- UPDATE: Which sends an update request

On the view, we will check if the request method is POST, and if yes we will extract the values.

For now we will simply extract these values.

So if you fill in values on the index page and click Join Room, you will see the username and

room name logged on the terminal:

Join a Chat Room

Room Name

django-girls

Your Name

[jamila|

Now let's create the chat view!

The Chat View

The chat view will be simple. We basically want the user’s username and the room they want to
join.

Go to your views.py and add the following:

This view accepts parameters room_name and username. Then it will render the room.html

template and provide the room_name and username values.

We don’t have a room.html template yet, so let’s create that:

This is what the room.html does:

- Extends the base.html template we already made

- Renders the title of our chat room and greets the user

- Creates a nice container for viewing messages

- Creates an input box for us to type our messages

- Notice we also render the room_name and username values with:

{% block include_js %}
{{ room_nameljson_script:"room_name" }}
{{ usernameljson_script:"username" }}

{% endblock %}

What this does is creates a script tag for both room_name and username. This is so we

can access it later.

Now that we have our room.html, let's update the urls.py to include the chatroom view.

Update urls.py:

Go to your urls.py inside the chat folder and update the urlpatterns as follows:

urlpatterns = [

("', views.index,
('room/<str:room_name>/<str:username>/', views.chatroom, ='chatroom')

We now added a room slug which will call the chatroom view we just created. Notice that the
path has two variables, the ‘room_name" and the ‘username’.

Now if you go to the url ‘/room/my-room/my-username’, you should see something like this:

% my-room
Welcome, my-username!

Awesome right? You did great. Take a five minute break to congratulate yourself. Next we will

implement the chat feature, but first - a little theory.

Real-time Django with Channels

You are building a chat server to communicate in a room and exchange messages. This
functionality requires real-time communication between the server and the client.

Think of it like this:

- Regular websites work like sending letters through mail you have to keep checking your
mailbox to see if you got new mail

- But a chat room needs to work more like a phone call - you hear the other person right away
when they speak

The old way of making websites (where you have to keep checking for updates) isn't good
enough for a chat room. It would be like refreshing your page every few seconds to see new
messages - that's slow and wastes resources!

Instead, we need a special way where:

- When someone sends a message, it appears on everyone's screen right away
- You don't need to keep checking or refreshing the page

- The server can instantly "push" new messages to everyone in the chat

This is called "asynchronous communication" - it's like having an open phone line where
messages can flow freely both ways.

This makes the chat:
- Faster
- More efficient

- More like a real conversation

We're going to build this chat room using something called ASGI, which helps us create this

instant, two-way communication.

Making Your Chat Room Work Better ASGI

Normally, Django works in a simple back-and-forth way:

- Your browser asks for something

- The website responds

- And that's it until you ask for something else

This way of deploying Django is called Web Server Gateway Interface (WSGI).
But for a chat room, we need something better. We need a system that can:

- Keep connections open

- Send messages instantly

- Handle many people chatting at once

This is where two important tools come in:

1. ASGI (think of it as an "upgraded version" of how Django usually works):

- Asynchronous Server Gateway interface allows for asynchronous communication. It's newer
and faster

- It can handle real-time stuff

- Perfect for chat rooms!

2. Channels (an extra tool that makes ASGI even better):

- Helps manage ongoing connections

- Great for chat rooms and similar apps

- Makes everything run smoothly

So now we will upgrade our app from just using http, to giving it the ability to use both http and
websockets.

Installing Channel In Django

Since we are now changing our django app from using WSGI to ASGI, we will have to install a
channels package. Install it with:

python -m pip install -U 'channels[daphne]==4.1.8@"

Then update the INSTALLED APPS inside the settings.py to include ‘daphne’ as follows:

Notice that "daphne’ has to be the first item in INSTALLED APPS, otherwise it will not work.

Then you will have to enable asgi support in django. Go to the “asgi.py file inside config, and
write the following:

We define the main ASGI application that will be executed when serving the Django project
through ASGI. You use the ProtocolTypeRouter class provided by Channels as the main entry
point of your routing system. ProtocolTypeRouter takes a dictionary that maps communication
types like http or websocket to ASGI applications. We instantiate this class with the default
application for the HTTP protocol. Later, we will add a protocol for the WebSocket.

Finally we will update the settings.py as follows:

Now if we run our application with:

npython manage.py runserver
¥)

We should see something like this:

ges with StatRe

Notice the “Starting ASGI/Daphne’, this tells us that our django is now running via ASGI.

Now that our django app is upgraded, let's give it the ability to accept websocket protocols. For
HTTP requests, what we usually do is:

- Define the view
- Add it to the app urls
- Add the app urls to the project urls

We are going to do the same thing for websockets:

- Define a consumer
- Configure websocket urls (called routes)
- Add the app routes to the project urls

Setting Up A Consumer

Consumers are the equivalent of Django views for asynchronous applications. As mentioned,
they handle WebSockets in a very similar way to how traditional views handle HTTP requests.

Consumers are ASGI applications that can handle messages, notifications, and other things.
Unlike Django views, consumers are built for long-running communication. URLs are mapped to
consumers through routing classes that allow you to combine and stack consumers.

Let’s implement a basic consumer that can accept WebSocket connections and echoes every
message it receives from the WebSocket back to it. This initial functionality will allow the
student to send messages to the consumer and receive back the messages it sends.

Create a new file inside the chat application directory and name it consumers.py. Add the
following code to it:

ChatConsumer(

This is the ChatConsumer consumer. This class inherits from the Channels

AsyncWebsocketConsumer class to implement a basic WebSocket consumer. In this consumer,
you implement the following methods:

« connnect(): Called when a new connection is received. You accept any connection with
self.accept(). You can also reject a connection by calling self.close().

» disconnect(): Called when the socket closes. You use pass because you don’t need to
implement any action when a client closes the connection.

« receive(): Called whenever data is received from the WebSocket. You expect text to be received
as text_data (this could also be binary data for binary data). You treat the text data received as
JSON. Therefore, you use json.loads() to load the received JSON data into a Python dictionary.
You access the message key, which you expect to be present in the JSON structure received. To

echo the message, you send the message back to the WebSocket with self.send(), transforming it

into JSON format again through json.dumps().

The initial version of your ChatConsumer consumer accepts any WebSocket connection and
echoes to the WebSocket client every message it receives. Note that the consumer does not

broadcast messages to other clients yet. You will build this functionality by implementing a
channel layer later.

First, let’s expose our consumer by adding it to the URLs of the project.

Routing

You need to define a URL to route connections to the ChatConsumer consumer you have
implemented.

Channels provides routing classes that allow you to combine and stack consumers to dispatch
based on what the connection is. You can think of them as the URL routing system of Django for
asynchronous applications.

Create a new file inside the chat application directory and name it routing.py. Add the following
code to it:

django.urls path
consumers

websocket_urlpatterns = [
(r"ws/room/<str:room_name>/<str:username>/", consumers.ChatConsumer.

]

In this code, you map a URL pattern with the ChatConsumer class that you defined in the
chat/consumers.py file. There are some details that are worth reviewing:

- You use Django’s path() to define the path just as how you do it on urls.py

- The URL includes two parameters: room_name and username. These parameters will be
available in the scope of the consumer and will allow you to identify the chat room the
user is connecting to.

- You call the as_asgi() method of the consumer class in order to get an ASGI application
that will instantiate an instance of the consumer for each user connection. This behavior
is similar to Django’s as_view() method for class-based views.

Now let's add these routes to the main route. Go to the asgi.py file and add the following:

Note that we have defined two protocols:

1. For http we tell it to use django’s default urls
2. For websocket we use the websocket _urlpatterns we defined in routing.py

Now let us give the browser the ability to connect to the websocket.

Implementing the WebSocket client

Now this is a django workshop, but unfortunately since we are dealing with the browser we are
forced to write some javascript. For now don’t worry too much about it, I have added comments
to explain what they do but if you do not understand it, don’t worry.

Go to your room.html file, and on the ‘domready” block add the following lines of code:

So for now if you got to “/room/test-room/rose’ you will see something like this:

9 0 & w0 O F IN&A =

® test-room
Welcome, rose!

[[Type your message...]

Enabling A Channel Layer

Currently with our application, if two people join the same room, they will not be able to
communicate with each other. This is because they are in separate channels.

To overcome this, we will add a channel layer to enable people in the same room to be able to
talk to each other.

The channel layer has two parts to manage communication:
Channels: these are like personal mailboxes:

e Each mailbox (channel) has a unique address (name)
e Anyone who knows your address can send you letters (messages)
e Only you can check and read your mailbox (consume messages)

Groups: these are like mailing lists:

e A mailing list (group) has a name

e Multiple mailboxes (channels) can be part of the list

e When someone sends a message to the mailing list, everyone on the list gets a copy
e People (channels) can join or leave the list at any time

In our use case:

e A chat application might give each user their own channel for private messages
e All users in a chat room might be part of a group, so when someone sends a message to
the group, everyone in the chat room receives it

We will use an InMemory channel layer by adding this on config/settings.py:

You can check if you can connect to the channel by first running this command:

python manage.py shell

Then run these:

»>»>> import channels.layers
»>> from asgiref.sync import async_to_sync
» channel layer = channels.layers.get channel layer()

> async_to_sync(channel_layer.send)('test_channel’', {'message’': "hello'})

»» async_to sync(channel layer.receive)('test channel')

You have successfully set up the channel layer. Good job!

Updating The Consumer To Broadcast Messages

Now that we have the channel layer, let's update the consumer to use it. We want that whenever
we receive a message, we update everyone connected to the channel with that message.

Modify the connect method in consumer.py as follows:

The code above does the following:

- We retrieve the username and room_name from the url. Remember we defined the url as:

'ws/room/<str:room_name>/<str:username>/", consumers.ChatConsumer.

So it can get the username and the room name by extracting it from the url.

- Once we get the room_name and username, we just add them to a group.
- Then finally, we add a self.accept() to accept incoming websocket connections.

Let’s also update the disconnect method so that we can remove a user from the channel layer.
Add the following lines to disconnect method:

We remove them from the channel by using group_discard().

Lastly we will update the receive method so that we can broadcast the received message to the

group.

Let’s import the django’s time utility:

django.utils timezone

Then update the receive function:

In the code above we get the data received which is json format, then we extract the
message content and assign it to a variable. We get the time it was sent and assign it to
the now variable.
We then broadcast the message with group_send, we provide the room_name to
broadcast to. And we include the data we want to send which are:

- message: ie the message

- user: which is the username

- datetime: which is the time it was sent
The type is a special field, and here we provide the function we want to use for
broadcasting the message. Let’s create that function:

This function simply sends the message.

The full consumer.py file should look like this:

ChatConsumer(

And voila, that’s it. We now have a complete chat application in django. Give it a try by opening
two browsers, connect to the same room and send messages.

(v}

© 0O & 0 ® £ IO -

® test
Welcome, trinidad!

John

|
/ Lololol

John
Hellow

’ ua

7
how are you? B

[[Type your message]

Adding Video Call Capabilities

Now that we have successfully created a realtime chat application, let’s extend it by adding a
video call functionality with WebRTC.

As discussed in the WebRTC section, our django server will act as a signalling server to connect
the devices that want to video call. After that the devices will communicate directly without
interacting with the server.

Let’s start by creating an app called call with:
django-admin startapp call

Then let’s include in our settings.py:

Let’s then create a video call view. Add this under call/views.py:

django.shortcuts

):
(request, 'call.html')

But we do not have a call.html yet, so we will have to create. Before we do though, let’s pause a
little and think of what we are trying to do.

- We want to a have a page where by someone can enter their username

- We will then give them an option of entering the username of the person they want to
call

- We then want the recipient to receive the calling notification

- And if they answer, we want to stream the contents of the video call to both the caller
and callee

- Since the contents of the video call itself will be sent from device to device directly
without the server, it means we will have to write some javascript.

Let’s start with the html, create a call.html file under the templates folder, and add the
following lines:

Here is a little explanation:

- We have a login section which is where we get the username of the caller. When the
user presses the 1ogin button it will call a javascript function called 1login(). We will
create this function shortly.

- TheUser Info Section isbasically the Hello + username

- TheCall Section is where we put the user we want to call. Then when we click the
call button, the button will call the javascript call() function. We haven’t made this
yet.

- The Answer Section is what will be displayed when a user is receiving a call. When
they call the answer button, it will run the javascript function answer (). We haven’t
made this yet.

- TheCalling Section is what will be displayed when we are calling someone.

- TheIn Call Section basically showsthe On Call With + username message

- The Video Section is the part that actually shows the video. The 1localVideo is the
caller and the remoteVideo is the one being called.

NB: Download the dj-profile.jpg image here:
https://github.com/pythontanzania/DjangoGirlsWorkShopNov24/blob/main/static/images/dj-pr
ofile.jpg and put the image under static/images/

Then add the following block in call.html:

https://github.com/pythontanzania/DjangoGirlsWorkShopNov24/blob/main/static/images/dj-profile.jpg
https://github.com/pythontanzania/DjangoGirlsWorkShopNov24/blob/main/static/images/dj-profile.jpg

Some more explanation:

- Weimporta call. js file, we haven’t created this yet so do not worry about it for now.

- We then get all the sections we defined earlier except for Login and hide them.

- Then we define the 1ogin() function which is run when a user presses the login
button. What this function does is get the username, set the message Hello +
username . It will then hide the login section and show the User Info and Call Sections.

- It will then call the connectSocket () javascript function. We haven’t created this yet.

Pat yourself in the back for reaching this far! What’s left to finish the video call functionality is
to:

- Create the consumer in the call app
- Add websocket routing to the call app
- Add the WebRTC javascript

Adding A Consumer to the Call App

The call consumer will be very similar to the chat consumer we made earlier. Create a
consumer . py file inside the call app and write the following:

CallConsumer(

We create a consumer class just like in the chat app. We then create a connect function that will
accept new websocket connections. We then send a response telling them they have successfully
connected. We will also need a disconnect function to handle when a user disconnects. So
let’s write that:

What this does is remove the connected user from the channel group. Finally, just like on the
chat app, we will need a receive function to handle incoming requests. Since we are expecting
to receive different types of messages (call someone, answer calls etc) we will have to check the
type of each content and handle it. Let’s start with handling login:

All messages we receive will have a type part and a data part. When we receive the login type
we will add whoever logged in into a channel group. We haven’t written the javascript part but
this is what it sends (don’t write this):

It will tell the server that this is a 1ogin type, and the data is name : myName which is the
username of the person calling. This is the name we extract and add to a group.

The next event type we expect is call, so let’s handle that. Add the following if-statement
to the consumer . py file:

We extract the name of the person we want to call. We then notify the callee that someone is
trying to call them. We do that by calling the call_received function and sending the

relevant data. We don’t have a call_received function yet, so let’s write it. Add the following
function to consumers.py:

This simply notifies the user that they are being called. This is the javascript block that handles
the various types we send to it:

So it is similar to our consumers. py file, it also checks what type is being received and handles
accordingly. We can see that the onNewCall function will hide irrelevant elements in the html
and show the answer section we wrote on the html.

Now that we already handle calling on the consumers. py file, let’s handle answering a call. On
the list of if-statements inside the receive function, add this:

What this does is extract the caller’s name and then runs the call_answered function. We
don’t have a call_answered function yet so let’s write it:

This simply sends a message to the javascript that they have answered the call and that they can
start the video call. This is what the javascript looks like (don’t write this):

We’re almost done. Remember that WebRTC is a peer to peer connection, meaning that devices
communicate directly with no server in between. To ensure that this connection is reliable,
there is something called Interactive Connectivity Establishment (ICE). The
purpose of this is to represent various ways two peers can connect to each other. This is to
ensure reliability. So we will have to add this on the receive function on our consumer . py
file. Add the following if -statement:

This will receive the various ICE candidates and send them to the javascript via the
ICEcandidate function. We don’t have that function yet so let’s write it:

This basically forwards the received information as is. For the curious, this is how the javascript
handles the ICE data (don’t write this):

We’re finally done with the consumer . py file. Your consumer . py file in the call app should
look like this:

CallConsumer(

Adding Consumer Routes To Call App

We should then add a routing. py file similar to how we did in the chat app. Create a
routing.py file inside the call app and write this:

django.urls re_path

consumers

call_websocket_urlpatterns = [
(r'ws/call/', consumers.CallConsumer.

]

This just creates a websocket url which is ws/call/. We then have to update the asgi.py file
to include this new router:

And we are all set. Last but not least we have to include the call. js file. Go to

https://raw.githubusercontent.com/pvthontanzania/DijangoGirlsWorkShopNov24/refs/heads/ma
in/static/js/call.is and paste its content in call. js file. This file should be under

static/js/call.js.

And congratulations, you have integrated video call capabilities. Here’s a screenshot of a
working demo:

https://raw.githubusercontent.com/pythontanzania/DjangoGirlsWorkShopNov24/refs/heads/main/static/js/call.js
https://raw.githubusercontent.com/pythontanzania/DjangoGirlsWorkShopNov24/refs/heads/main/static/js/call.js

He“o' fuad Hello, fuad

On Call With

Incoming Call
avil

avi

Answer

